A tolerancia biztonsága
2005. június 01. 00:00
Sorozatunk előző részében láttuk, hogyan számíthatjuk ki a becsült értékek konfidenciaintervallumát, behatárolva ezzel például egy hatásmutató ismeretlen populációs átlagának nagyságát (adott megbízhatósággal). Azért pont az átlagét, mert a gyógyszerek megméretése legtöbbször az átlagos hatás alapján történik (bár a bizonyítási eljárás, azaz a statisztikai próba az átlagot valamely más paraméterhez, a szóráshoz vagy a standard hibához viszonyítja). Ezekben a vizsgálatokban a szórás meghatározása önmagában nem fontos, csak viszonyítási alapul szolgál. Amolyan muszájparaméter, mely koloncként lóg a statisztikai próbán (angol megjelölése: nuisance parameter).
Pedig a gyógyszerszedő ember számára még a konfidenciaintervallumal ékesített átlagos hatás sem tartalmaz túl sok információt. Karinthyt („Véget ért a nagy járvány. Hurrá, ma már csak én haltam meg!”) parafrazeálva: „Felfedezték betegségem kiváló gyógyszerét. Beszedtem és megtudtam, hogy nem vagyok átlagos ember.” (A generikumokkal kapcsolatban néha felmerülő gyanakvásnak is az az alapja, hogy csak „átlagosan” kell megegyezniük az eredeti gyógyszerrel.) Ha egy normális eloszlású hatásmutatónak ismerjük a populációs átlagát és szórását, akkor pontosan meg tudjuk mondani, hogy a populáció hány százaléka tartozik egy adott intervallumba.
Ha például egy fogyókúrás szer átlagosan 5 kg súlycsökkenést eredményez, s a csökkenések szórása 2 kg, akkor a gyógyszerszedők 95 százalékának súlycsökkkenése nagyobb lesz 1 kg-nál és kisebb 9 kg-nál. Az intervallum végpontjainak kiszámításában a szórás már nem kolonc, hanem teljes jogú paraméter. De csak akkor számolhatunk ezzel a módszerrel, ha ismerjük a paraméterek „valódi”, populációra vonatkozó értékét.
Pedig a gyógyszerszedő ember számára még a konfidenciaintervallumal ékesített átlagos hatás sem tartalmaz túl sok információt. Karinthyt („Véget ért a nagy járvány. Hurrá, ma már csak én haltam meg!”) parafrazeálva: „Felfedezték betegségem kiváló gyógyszerét. Beszedtem és megtudtam, hogy nem vagyok átlagos ember.” (A generikumokkal kapcsolatban néha felmerülő gyanakvásnak is az az alapja, hogy csak „átlagosan” kell megegyezniük az eredeti gyógyszerrel.) Ha egy normális eloszlású hatásmutatónak ismerjük a populációs átlagát és szórását, akkor pontosan meg tudjuk mondani, hogy a populáció hány százaléka tartozik egy adott intervallumba.
Ha például egy fogyókúrás szer átlagosan 5 kg súlycsökkenést eredményez, s a csökkenések szórása 2 kg, akkor a gyógyszerszedők 95 százalékának súlycsökkkenése nagyobb lesz 1 kg-nál és kisebb 9 kg-nál. Az intervallum végpontjainak kiszámításában a szórás már nem kolonc, hanem teljes jogú paraméter. De csak akkor számolhatunk ezzel a módszerrel, ha ismerjük a paraméterek „valódi”, populációra vonatkozó értékét.
A teljes cikket csak regisztrált felhasználóink olvashatják. Kérjük jelentkezzen be az oldalra vagy regisztráljon!