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Background: Data on the correlations between biomarkers to suggest cost-effectivemulti-marker (MM)panels pre-
dictive for ST-elevation myocardial infarction (STEMI) patients are lacking. We sought to explore the relationship
between cardiac troponin I (cTnI), C-reactive protein (CRP), B-type natriuretic peptide (BNP), and chromogranin
A (CgA) accounting for biomarkers' profiles detected within 48 h from successful primary percutaneous coronary
intervention (PPCI).
Methods: In 73 STEMI patients cTnI, CRP, BNP, and CgAweremeasured before PPCI and 6, 24, and 48 h later. STATIS
methods generalizing Principal Component Analysis on three-waydata setswere employed to extract information
about: 1) similarities between patients, 2) contribution of each time of sampling and 3) correlations between
biomarkers' profiles.
Results: STEMI patients who underwent successful PPCI emerged to have a homogeneous profile tailored on
biomarkers' evaluation within 48 h. Their measurements at 24 h contributed the most variability and informa-

tion both to patients' and to biomarkers' profiles.
BNP and cTnI were highly correlated and explained the 40.1% of the total variance, whereas CgA resulted inde-
pendent and explained the 26.3% of the total variance.
Conclusions: Markers' measurements at 24 h after PPCI contributed most information to the definition of
patients' profile. BNP and cTnI resulted interchangeable in aMMpanel for reporting about the extent of necrosis.
© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Several circulating biomarkers have been reported to carry prognos-
tic value in patients with a ST-elevationmyocardial infarction (STEMI)2

undergoing primary percutaneous coronary intervention (PPCI) [1–4].
In addition, a growing body of evidence has supported a multi-marker
(MM) strategy, including biomarkers of necrosis, hemodynamic stress,
and inflammation, to improve the prognostic assessment of STEMI pa-
tients after revascularization [5,6].

Some studies highlighted that in STEMI patients dynamic changes of
these markers occurring in the course of the acute event more than
baseline concentrations gather relevant information on the infarct size
ale ‘Luigi Sacco’, via G.B. Grassi,

).

yocardial infarction; PPCI: pri-
arker; cTnI: cardiac troponin

ptide; CgA: Chromogranin A;
dverse cardiovascular event;
yocardial Infarction.

rights reserved.
and on reperfusion effects [7–9]. This is in agreement with the fact
that in the course of acute event in early reperfused STEMI patients
blood concentrations of biomarkers are affected by wide-time depen-
dent modifications [10]. In this perspective, the evaluation of dynamic
changes of cardiovascular biomarkers rather than “static” concentrations
may better describe the evolution of the acute event. Till now investiga-
tors have usually analyzed biomarker profiles one by one, despite that it
is noteworthy that biomarkers of necrosis, hemodynamic stress, and in-
flammation are involved in overlapping pathways and an interrelation
should be expected [11–13]. An effective MMpanel, implying a minimal
set of independent biomarkers, is indeed recommended to improve the
prognostic assessment.

However there is a great gap in the current literature whether
considering that any prognostic evaluation involving a MM strategy
should imply the preliminary investigation of time dependent dynam-
ics, patterns of release and relationships of co-detected biomarkers. In
particular to avoid redundant and not cost-effective information it is
mandatory to clarify the correlations between the joined profiles of can-
didate biomarkers.

In this study we aimed to explore the relationship among four car-
diovascular biomarker profiles in the evolution of STEMI after PPCI in
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order to characterize a basic cluster of biomarkers providing indepen-
dent information about the evolution of acute event. Furthermore, we
sought to evaluate if the provided information about patients' profiles
might be summarized by the simultaneous detection of these markers
performed once. The biomarker profiles derived in the first 48 h after
revascularization included cardiac troponin I (cTnI), C-reactive pro-
tein (CRP), B-type natriuretic peptide (BNP), and chromogranin A
(CgA). As these biomarkers are involved in nested and sequential
pathophysiologic pathways developing in the course of acute event
(i.e. necrosis, inflammation, hemodynamic stress, and sympathetic
activation), complex relations among their profiles are expected.
Thus we resorted to STATIS methodology a statistical approach suit-
able to investigate the patterns of correlations between different
biomarkers, measured at serial time points, on the same set of patients,
independently by dimensionality. This technique belongs to the Prin-
cipal Component Analysis (PCA) family, whose goal is to extract rele-
vant information from sets of correlated variables, as biomarkers,
without losing information carried by the original data [14]. Although
classical multivariable statistical analysis might result of easier inter-
pretation and is widely used in biomarker investigations, it does not
enable us to obtain unbiased evidences for our purpose because of
the high correlations between serial measurements.

2. Materials and methods

2.1. Patients

The complete study protocol, the enrollment criteria of STEMI pa-
tients who underwent successful PPCI and the employed analytical
methodologies have been reported in detail elsewhere [10]. Here
we briefly summarize the methodology. From 2007 to 2009 a contin-
uous prospective case series of 87 STEMI patients undergoing PPCI
were enrolled at the Catheterization Laboratory of Cardiology II of
Maggiore Hospital of Novara. PPCI and pharmacological treatment were
administered according to American College of Cardiology/American
Heart Association/European Society of Cardiology Guidelines [15].

The inclusion criteriawere: 1) ischemic chest pain; 2) ST-segment el-
evation in two contiguous leads on the 12-lead electrocardiogram; and
3) time from onset of symptoms to admission (admission time) b12 h.
Exclusion criteria were: 1) successful thrombolysis, unsuccessful PPCI
(TIMI from 0 to 2 at the end of procedure), emergency surgery, chest
pain lastingmore than 12 h; 2) dilated or hypertrophic cardiomyopathy,
previous diagnosis of acute or chronic cardiac failure, cardiogenic shock,
deep venous thrombosis or acute pulmonary embolism, infection, sys-
temic inflammatory or neoplastic disease; 3) documented renal failure
or clinical evidence of renal impairment; 4) Killip index ≥2; and 5) age
>90 years. The study was approved by the Institutional Review Board
and a written informed consent before PPCI was obtained.

2.2. Biomarkers

Venous blood samples were drawn before PPCI (baseline) and 6 h,
24 h, and 48 h after PPCI (time of sampling) into tubes containing
EDTA (BNP) or no anticoagulants [cTnI, CRP, CgA, and Cystatin C
(CyC)]. Samples were stored in aliquots at −80 °C until measure-
ments. We employed the following assays:

1) TnI-Ultra™ assay with: analytical range of measurement 0–50 μg/L;
limit of detection (LoD), 0.02 μg/L; cut-off, 0.04 μg/L; analytical coef-
ficient of variation (CVa), 15% at 0.08 μg/L and 5% at 9 μg/L.

2) BNP immunoassaywith analytical rangeofmeasurement0–5000 ng/L;
LoD, 2 ng/L; cut-off, 110 ng/L; CVa, 5.3% at 48.2 ng/L, 4.3% at 474 ng/L
and 3% at 1797 ng/L.

3) CRP immunoassaywith analytical range ofmeasurement 0–163 mg/L;
LoD, 1 mg/L; cut-off, 10 mg/L, CVa, 8% at 6.9 mg/L and7.7% at 25 mg/L.
These assays were carried out on the Advia Centaur platform
(Siemens Healthcare Diagnostics).

4) A manual CgA immunoradiometric assay (CIS-BIO), with analytical
range of measurement 0–1370 μg/L; LoD, 1.5 μg/L; cut-off, 98 μg/L;
CVa, 12.2% at 42.3 μg/L, 8% at 131.6 μg/L and 6% at 294.2 μg/L.

5) An immunonephelometric assay for CyC performed on BN-II neph-
elometer (Siemens Healthcare Diagnostics), with analytical range of
measurement 0–7.58 mg/L; LoD, 0.005 mg/L; cut-off, 1.0 mg/L;
CVa, 2.4% at 0.8 mg/L and 2.9% at 7.1 mg/L.

The protocol allowed deriving a complete biomarker release pro-
file for cTnI, BNP, CRP, CgA and CyC [10].

Follow-up data were collected in order to possibly aid the inter-
pretation of patient profiles.

2.3. Statistical methods

The interplay in overlapping pathophysiologic mechanisms of eval-
uated biomarkers suggested that in the present data complex cor-
relations should be expected. Thus to assess possible associations
between biomarker profiles we resorted to multivariate STATIS meth-
odology [16,17]. In fact correlations among profiles of different bio-
markers and among their serial measurements at different times of
sampling prevented us from the application of classicalmultivariate sta-
tistical analysis.

The STATIS method generalizes PCA [18] to handle three-way data
sets like those consisting of several biomarkers (variables) serially
measured at sequential times of sampling in several patients. Fig. 1
shows the three-way structure for the present study. In particular,
PCA extracts relevant independent information from a more simple
two-waymatrix of data consisting of biomarkersmeasured on patients
by studying the pattern of association among biomarkers. Thus PCA
identifies independent components (principal components or axis) as
linear combinations of the original variables. The principal components
are ordered on the basis of the amount of data variability they explain.
Then PCA allows the visualization of results by a plot displaying projec-
tions of variables or patients on the space defined by the first two
indentified principal components. As anticipated because of serial mea-
surements, the methodology [16,17] suitable to this specific three-way
structure of data is STATIS. This is performed twice: firstly to evaluate
similarities between patients (DIRECT STATIS), and then to define
biomarker release profiles (DUAL STATIS). Each STATIS procedure con-
sists of two sequential steps namely Interstructure and Compromise.
Interstructure evaluates possible correlations among different times of
sampling and provides their optimal weights in the definition of patient
profiles (DIRECT STATIS) or in the definition of average biomarker
profiles (DUAL STATIS). Thus the Interstructure plot shows themost cor-
related times of sampling and in addition those mainly contributing to
the definition of the Compromise. Compromise searches similar patterns
among patients (DIRECT STATIS) or an average association structure
between biomarkers (DUAL STATIS). To this purpose a standard PCA is
performed on an average three-way data set derived from the original
one (Fig. 1). Compromise results can be visualized by plotting patients
(DIRECT STATIS) or biomarkers (DUAL STATIS) on the space defined
by the respective first two principal components. These methods are
commonly employed to analyze large sets of environmental data and
other authors exploited them for cardiovascular framework [14]. All
analyses were performed by R software, library ade4 [19].

3. Results

3.1. Patients

Seventy-three out of 87 subjects entered in the present statistical anal-
ysis; particularly, we excluded 13 patients since marker measurements



Fig. 1. Three-way structure of the study data:

1. Original data: simple data sets (patients×biomarkers) at each time of sampling.
2. Data set for Compromise assessment: average three-way data set (obtained from Interstructure) undergone standard PCA for Compromise definition.
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were not available at all times and one who underwent unsuccessful re-
vascularization (“no-reflow”).

Baseline features of the enrolled patients and marker concentra-
tions at each time of sampling are reported in Tables 1A and 1B. Al-
though the original protocol implied the measurement of CyC, this
marker was not further considered in the analysis since in our pa-
tients there was no evidence of increasing/decreasing kinetics. In
addition, median CyC concentrations detected at each time point
were b1.0 mg/L (threshold level reported in literature for considering
the clinical relevance of marker concentrations) [10].

The first occurrence of a major adverse cardiovascular event
(MACE), defined as cardiac death, recurrence of STEMI (re-STEMI),
recurrence of PCI (re-PCI) of the infarct-related artery for in-stent re-
stenosis, and re-hospitalization for occurrence of non ST-elevation
acute coronary syndrome in a 1-year follow-up, was recorded.
MACEs resulted in 10 patients (13.7%).
3.2. Similarities between patients: DIRECT STATIS

DIRECT STATIS allowed highlighting patient profiles (Fig. 2). Firstly,
Interstructure investigates whether a common correlation structure
Table 1A
Baseline features of the patients.

Variable Number of patients (%)

Male 68 (80.9%)
Hypertension 52 (61.9%)
Active smoking 43 (51.2%)
Diabetes 11 (13.1%)
Vasculopathy 3 (3.57%)
Family history of coronary artery disease 24 (28.6%)
Hypercholesterolemia 35 (41.7%)
Previous history of coronary artery disease 18 (21.4%)
Anterior MI 33 (39.3%)
Admission left ventricular ejection fraction >40% 65 (77.4%)

Medications
Aspirin 27 (32.1%)
Plavix 13 (14.5%)
Statins 17 (20.2%)
Beta-blocker 18 (21.4%)
Angiotensin-converting enzyme inhibitor 22 (26.2%)
Calcium-channel antagonists 17 (20.2%)

PPCI features
Number of treated vessels

0 6 (7.1%)
1 74 (88.1%)
2 4 (4.8%)

Number of stents
0 8 (9.5%)
1 47 (55.9 %)
2 17 (20.2%)
3 11 (13.1%)
4 1 (1.2%)

Patients submitted to GPIIb/IIIa inhibitors 45 (53.6%)
between the four times of sampling could be assumed. Interstructure re-
sults in Fig. 2A suggest that times of sampling at 24 h and 48 h display a
high correlation (quite overlapping arrows) measured in STATIS by the
correlation coefficient RV=0.914. Lower correlations resulted between
times of sampling at baseline and at 6 h (RV=0.610) and between
those at 6 h and 24 h (RV=0.735). According to the table of weights
in Fig. 2B, times of sampling at 24 h were suggested to contribute most
variability to patient profiles. Thus, it is likely that after 24 h the patterns
of patientsmight not considerably change,whereas themain variation is
evident from baseline to 6 h after treatment. Furthermore the Compro-
mise plot (Fig. 2C) indicated a large homogeneity in patient profiles,
with the first principal component (PC1) accounting for 71.3% of total
variability and the second one (PC2) for 12.6%.

Only 2 patients (ID 32 and 15) in the middle/upper area of the plot
and 2 patients (ID 51 and 55) in the down side of the graph showed a
different average profile when compared to the other patients. We
looked at the clinical features/biomarker profiles characterizing
those patients isolated from the main group that can possibly explain
the different behavior. Both patients 51 and 55 were characterized by
a late and consistent BNP increase (at 48 h), associated with a typical
kinetic for cTnI and to persistently elevated CgA concentrations. Only
in the latter case there was a late CgA rising. No other clinical charac-
teristics differentiated these patients from others plotted in the cen-
tral part of the graph. Patients 32 and 15 differed from the others
only because of lower CRP concentrations at all times of the sampling,
probably due to a strong pre-admission anti-inflammatory treatment.

In summary, the results from the Compromise plot of DIRECT
STATIS allowed the identification of a unique profile for STEMI pa-
tients who underwent successful PPCI.
3.2.1. Contribution of each time of sampling to patient profiles
The contribution of each biomarker measured at each time of sam-

pling to the definition of PC1 and PC2 of DIRECT STATIS Compromise
was further investigated. The derived panels (Fig. 3) were obtained
by plotting projections of biomarkers on the space of the first two
components of the Compromise according to the different times of
sampling. According to this approach, the coordinates on PC1 had a
Table 1B
Median (25th; 75th percentile) biomarker concentrations at different time points.

Concentrations Baseline at 6 h at 24 h at 48 h

cTnI (μg/L) 0.43
(0.075;2.41)

74.3
(30.3;213.7)

48.3
(33.5;78.1)

22.2
(14.0;43.4)

BNP (ng/L) 27.8
(14.8;69.6)

71.45
(39.9;132.8)

173.9
(99.9;277.0)

125.7
(69.8;220.6)

CRP (mg/L) 2.6
(1.0;6.7)

3.4
(1.0;8.2)

16
(10.0;29.0)

31
(15.0;66.0)

CyC (mg/L) 0.73
(0.6;0.9)

0.72
(0.62;0.8)

0.74
(0.63;0.92)

0.74
(0.62;0.8)

CgA (μg/L) 72.95
(49.35;116.0)

75.0
(50.0;119.0)

97.0
(64.4;162.9)

127.0
(85.0;183.0)



Fig. 2. DIRECT STATIS graphical visualization of results. A) Interstructure plot showing the high correlation between sampling at 24 h and 48 h (overlapping arrows). B) Table
weights of the four times of sampling (square cosines vs weights) showing the highest importance of 24 h sample (higher squared cosines) in the definition of the Compromise
plot. C) Compromise plot: projections of each patient according to average biomarker profiles on the space of the first two components (PC1 and PC2). This plot shows the high
homogeneity among patients' profiles.
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negative sign for all biomarkers measured at each time. On PC2 a neg-
ative sign was reported for all biomarkers, except for CgA.

Fig. 3 summarizes the contribution of all markers to the evolution
of the profile of a patient in the course of the acute event. Across the
four time windows, those markers showing relevant changes and
mainly contributing to the definition of PC1 were cTnI and BNP. In
particular, cTnI measured at 6 h and BNP at 24 h and also at 48 h pro-
vided the highest contribution.

The presented results complete the information on the dynamics of
single biomarkers in the evolution of the acute event drawn in our previ-
ous study [10]. Accordingly themainmarkers showing dynamic changes
Fig. 3. Dynamics of markers according to times of sampling. PC1 = first principal componen
coordinates with negative sign.
across the four time windows were cTnI and BNP. In particular, cTnI
shifted at 6 h far from CRP (a more stationary marker), coming back
to the original position at 24 h. BNP seemed to follow the cTnI shift,
but increasing its distance from cTnI and CRP at 48 h. CRP appeared as
the most static marker, whereas CgA tended to slightly move at 48 h.

3.3. Similarities between patterns of markers: DUAL STATIS

DUAL STATIS allowed highlighting relationships between biomarker
profiles. Graphical results, analogous to those obtained for DIRECT
STATIS, are reported in Fig. 4. Since Interstructure extracts a common
t; PC2 = second principal component. Note that biomarkers move in a space with PC1

image of Fig.�2
image of Fig.�3


Fig. 4. DUAL STATIS graphical visualization of results. A) Interstructure plot showing the high correlation between sampling at 24 h and 48 h (overlapping arrows) and between
sampling at baseline and 6 h (quite overlapping arrows); B) Table weights of the four times of sampling (squared cosines vs weights) showing the highest importance of 24 h
in the definition of the Compromise plot. C) Compromise plot: projections of each biomarker according to average patient's profile on the space of the first two components (PC1
and PC2). This plot shows that the first principal component (PC1) is mainly explained by BNP and cTnI.
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correlation structure between the four times of sampling, the plot
(Fig. 4A) reported relevant associations between measurements at
baseline and at 6 h and between those at 24 h and 48 h. The estimated
RVs showed a high level of correlation among all times of sampling (RV
>0.9), whereas the time of sampling mainly contributing to the defini-
tion of the Compromise and thus to average biomarker profiles was
again 24 h (Fig. 4B).

In the Compromise analysis the first two principal components
accounted for 66.4% of the explained variance; in particular, PC1
explained 40.1%. According to the Compromise plot (Fig. 4C), PC1 was
mainly associated to BNP and cTnI, with a minor influence by CRP. Con-
versely, PC2 was mainly explained by CgA and CRP with coordinates of
opposite signs, whereas the contribution of BNP was quite absent.
Accordingly, we can speculate that BNPmay explain a pathophysiologic
mechanism that is orthogonal to that referable to CgA. From this analy-
sis, BNP and cTnI provided quite overlapping information to patients'
profiles and they may be considered as interchangeable in a MM
panel. From the pathophysiologic point of view, PC1 may explain the
extension of necrosis. Independent informationwasmainly contributed
byCgA (orthogonal to previousmarkers) and less byCRP,whichpartial-
ly overlapped to BNP and cTnI. CgA and CRP seemed to have correlated,
but opposite effects (positive vs negative sign). There is a common
pathophysiologicmechanism (in sympathetic activation and inflamma-
tion) involving both markers that seemed to be positively triggered by
CgA release and negatively depicted by CRP.

4. Discussion

A large body of literature has shown that blood concentrations of
various cardiovascular risk biomarkers (i.e., markers of myocardial ne-
crosis, hemodynamic stress/ischemic burden, inflammation, and sym-
pathetic activation) detected after a STEMI are associated with clinical
prognosis [1–5]. Due to compelling pathophysiologic assumptions, a
MM strategy based on the simultaneous detection of different bio-
markers seems to offer incremental prognostic value to common clinical
risk scores [2,6,20]. However, only sparse data are available about those
candidatemarkers to be combined in an effectiveMMpanel for improv-
ing the risk profile of patients [6,9,21]. It is likely that some biomarkers
may contribute redundant and partially overlapping information as the
global biochemical milieu refers to a complex sequence of interacting
and correlated pathophysiologic mechanisms developing during the
acute event [9,11]. In this framework, two aspects should be stressed.
First, few information is available about the relationship of different bio-
markers in STEMI patients and this mainly threatens the selection of
biomarkers for making reliable prognostic algorithms [6]. Secondly,
STEMI is a dynamic phenomenon in which biomarker releases assume
specific kinetics [10]. As a consequence, a single marker concentration
detected at admission or just before revascularization is unlikely
to capture the more relevant pathophysiologic changes, underlying
STEMI evolution (i.e., infarct size, reperfusion effect, and inflammatory
response), and greatly influence the patient's prognosis.

This concept has been well clarified by a wide literature reporting
as the shape of the pattern of cTnI release within 48 h from revascu-
larization carries a relevant prognostic impact. In particular, a rapid
cTn increase, peaking at ~14 h, followed by a fast decrease mirrors
the sharp washout of necrosis markers and a successful reperfusion
[22]. According to the preliminary evidence on cTnI, in STEMI patients
who underwent PPCI it is mandatory to investigate the release pat-
terns of those biomarker candidate to a MM panel together with
their correlations. Before evaluating the prognostic power of a MM
panel and promote survival studies in these patients, a strong back-
ground on the joint behavior of the included biomarkers is currently
required to be built up. For a reliable MM approach it is first manda-
tory to characterize a minimum cluster of biomarkers that may be se-
lected whether contributing independent information about the
pathophysiologic background of STEMI. Furthermore, it is relevant
to define whether the biomarker profiles might be synthesized by
one single measurement (traditionally assumed as the peak level)
[3]. Thus, the optimal time of sampling should be assessed to gather
most information from the simultaneous quantitation of different
markers performed once. To this purpose, our study was performed
on a homogeneous population of STEMI patients who underwent suc-
cessful PPCI. In these patients, four relevant cardiovascular risk bio-
markers (BNP, cTnI, CRP, and CgA) were measured before PPCI and
6, 24, 48 h later in order to derive complete biomarker profiles [10].
We identified firstly those markers contributing independent infor-
mation to the assessment of average patients' profiles. Furthermore,
we defined the optimal time of sampling to perform the simultaneous
detection of markers contributing the largest amount of information
to the patient's profile. Dealing with a great matrix of expected corre-
lated data (i.e., correlations between intra-patient measurements of
each biomarker and between concentrations of all biomarkers), we
resorted to a complex PCA analysis that, with a more simple approach
and explorative purposes, has already been applied for quantitative

image of Fig.�4
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profiling of large sets of biomarkers in the cardiovascular framework
[14]. Despite its complexity, the STATIS method is recommended in-
stead of the classical multivariate analysis to extract unbiased evidence
from a three-way data set (patients x biomarkers×times of sampling)
with a high grade of correlation between data.

The PCA analysis highlighted a high grade of similarity between aver-
age marker profiles in our patients. Most patients were characterized by
quite overlapping mean profiles and this suggested that evolving STEMI
after successful PPCI may be represented by a rather homogenous phe-
nomenon, despite the complexity of the pathophysiologic background
and the wide biomarker changes detectable across the four time frames
(particularly for cTnI and BNP). Furthermore, it was relevant to define
that the sampling time contributing most information from biomarker
measurements to the definition of patients' profile was 24 h after PPCI.
Thus, one single determination of allmarkers at this timemay be enough,
whereas marker determinations at baseline resulted less informative.
This is not amarginal result since several studies assessed the prognostic
contribution of cardiovascular biomarkers by accountingmarker concen-
trations at admission or, alternatively, at a variable time before/after re-
perfusion, likely losing a great amount of information contributed by
biomarker detection [3,12,20,21]. Increasing evidence has recently
suggested that selection of the optimal time of sampling is critical to de-
fine the prognostic contribution of biomarkers in STEMI [8–10]. In fact,
the marker release follows a specific dynamic, implying wide changes
in concentrations within the first 48 h from the onset of the acute
event [10]. This concept was further confirmed in this study: cTnI and
BNP appeared as highly dynamic markers in contrast to CRP and, partic-
ularly, to CgA, whichmay be assumed as themost static ones. cTnI seems
the earlymarkermirroring, between 6 and 24 h after PPCI, the perturba-
tion of the cardiovascular system due to infarct and following immediate
reperfusion. At 48 h, cTnI envisages the restoration of the original bal-
ance as it comes back to baseline concentrations. BNP followed the
cTnI shift, as it reports overlapping information concerning infarct
size, angiographic reflow and ST-segment resolution [23–25]. Persistent
high concentrations of BNP at 48 h may be associated to additional
pathophysiologic aspects that are not detectable by pure necrosis
markers (such as ischemic burden, hemodinamic stress, left ventricular
dysfunction, sympathetic activation, and counter-regulatory system ac-
tivation) [26,27]. Quite unexpectedly, in the studied patients neither in-
flammatory response to infarct size (mirrored by CRP increase) nor
sympathetic activation (by CgA) seemed to be relevant.

The second PCA analysis focused on the evaluation of correlations
between biomarkers, showing that STEMI may be explained by two or-
thogonal pathophysiologic aspects. The first one is mainly described by
BNP and cTnI determinations that were strictly related. According to
specificities of these markers, this aspect should be most closely identi-
fiedwithmyocardial necrosis, although BNP appeared to contribute fur-
ther information to cTnI, being also influenced by previously described
additionalmechanisms. Our evaluation of biomarker profiles in the first
48 h after PPCI was able to throw a strong correlation between BNP and
cTnI in contrast to other studies, which, resorting to baseline marker
concentrations, found only a modest relationship [28,29]. CRP was
shown to add only minimal independent contribution to the character-
ization of the pathophysiologic mechanism explained by cTnI and BNP,
despite its partial correlation with both biomarkers. Although the rela-
tionship of CRP with traditional necrosis markers is well known and
this result was rather expected, recent studies have reported that sys-
temic inflammation (evaluated by CRP concentrations at baseline)
may also enhance BNP expression independently of myocardial stretch
and ischemia [12]. This unexpected pathophysiologic relationship may
further complicate the biochemical substrate and potentially increase
BNP informative power over the cTnI one.

A second pathophysiologic aspect is mainly depicted by CgA that
resulted fully independent from BNP and cTnI. CRP partially contrib-
uted to this second component, but with an opposite effect with re-
spect to CgA. Although some evidence about a correlation between
CgA and BNP is available in literature [30], our data showed that
these markers gathered independent information, in agreement with
more recent findings [31]. Although CgA is considered as an index of
increased sympathetic activity, its pathophysiologic role in acute myo-
cardial infarction (AMI) should be yet characterized [4]. The complex
neuroendocrine and immune activation following acute ischemia and
associated left ventricular dysfunction was first suggested to trigger
CgA production [32,33]. However, the lack of evident relationship be-
tween CgA and BNP has suggested considering this hypothesis with
caution. In addition, alternative valid pathophysiologic explanations
may be found ifwe consider the increase of the pro-hormone CgA as pre-
dictive for the increase of the derived bioactive peptides vasostatin and
catestatin [34,35]. Their elevation following AMI and the possible patho-
physiologic implications has been discussed [36,37]. Particularly, these
peptides were found to be involved in various counter-regulatory pro-
cesses, such as protection against the extension of myocardial infarction
exerting a cardioprotective influence under infarct/reperfusion condi-
tions against excessive excitatory sympathetic challenges [36,37]. It is
relevant to highlight that catestatin exerts a direct protective effect on
myocardium, independent of its anti-adrenergic and/or endothelial
effects [36]. In this perspective, CgA profiles/measurements may explain
a pathophysiologic mechanism orthogonal to the one explained by BNP
and opposite to inflammatory response detected by CRP.

Despite the complexity of the statistical approach, a number of
papers in the cardiovascular framework have recently resorted to
methods generalizing PCA to handle MM panels and serial measure-
ments [14,38,39]. Thismeetswith expert opinions remarking that tradi-
tional regression analyses is possibly not sufficient to reliably explore
the complex interplay between different biomarkers especially in a dy-
namic pathological framework. Nowadays, the application of more
appropriate statistical methods is required to provide unbiased evi-
dence [40]. As a limitation of this study, we are unable to evaluate the
prognostic impact of thosemarkers and of the time of sampling provid-
ing the main independent information to patients' profiles. The present
case series is quite limited in thenumber of subjects andMACEs in order
to permit survival analysis. On the other hand, this was not the aim of
our study as presented findings are preliminary and basic to further
prognostic studies requiring a different design, a higher sample size
and incidence of MACEs [41]. In addition, we are aware that PCA
extracts only linear combinations of available variables and that non-
linearity might be relevant in investigating biomarker profiles. Howev-
er, our goal was to explore the contribution to overall variability of a set
of correlated biomarkers seriallymeasured and not to define a function-
al pattern to describe the biomarker profile across the different times of
sampling. To our aim, linear combinations of biomarkers can contribute
most information.

In conclusion, this study shows that BNP and CgA measurements
at 24 h after PPCI may synthesize the main independent pathophysi-
ologic mechanisms underlying STEMI. Our findings support previous
data showing the complex implications of sympathetic activation
[33–37,42–44] and the greater prognostic power of BNP, when com-
pared with cardiac troponins in these patients [6,28,45,46]. These re-
sults may contribute a valuable tool to further optimize post-PPCI
strategies in patients still at high risk for adverse events, despite the
progress in reducing mortality made over the past decade [47,48].
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